- Best
Available
Copy

il

AD-A008 858

SOME ISSUES IN PROGRAMMING MULTI-MINI-PROCESSORS
CARNEGIE-MELLON UNIVERSITY

PREPARED FOR
Derense ADVANCED RESEARCH PROJECTS AGENCY
AIR Force OFFICE OF SCIENTIFIC RESEARCH

JAMUARY 1975

DISTRIBUTED BY:

NS

National Technical Information Se:vice
U. S. DEPARTMENT OF COV.MERCE

|
]
|
|
i

e A R R

UNCIASSTFIED .
SECURITY CLASSIFICATION OF THWiS PAGE (When Data Lntersd)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE Henr cTO
. REPORT NUM-BER e ~nm A A 2. GOVY ACCESSION N2 3. RECIPIENT'S CATALOG NUMBE R
e 15 0508 AD-A g
AFD LA00 T

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

SOME ISSUES IN PROGRAMMING MULTI-MINI-PROCESSOR$ 1Interim

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBERTrs)

A. Newell and G. Robertson F44620-73-C-0074

10, PROGHAM ELEMENT. PROJFCT, TASK

e e et e
9. PERFORMING ORGANIZATION NAME AND ADDRESS
AREA & WORK UNIT NUMBERS

Carnegie-Mellon University

Dept. of Computer Science 61101D
Pittsburgh, PA 15213 A02u66

11 CONTROLLING DFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Rescarch Projects Agency January 1975
1400 Wilson Blvd lwuuasn OF PAGES

Arlington, VA 22209 -
MONITORING AGENCTY NAME 2 ADDRESS/!! ditferent from Controlling Qlﬂto) 1S. SECURITY CLASS. (of shif report)
Air Force Office of Scientific Research (NM)

1400 Wilson Blvd UNCLASSIFIED

Arlington, VA 22209 TSs. DECL ASSIFICATION DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT fof this Repart)

Approved for Public Relesse; Distribution Unliwmited.

7. DISTRIBUTION STATEMENT (of the abstract entered in Liock 20, if different from Naport)

18. SUPPLEMENTARY NOTES

PRICES SUBJECT T0 CiAl6E

19. KEY WORDS /Continue on e side if ¥y and identify by block number)

20. apsTRACY fContiruwe on reverse side if necessary and icentity by block Mbﬂ)

Large computer systems can be constructed by joining together many minicon Puters
creating what can be called multi-mini-processors. The first such systems

are just reaching the point where problems of programming and use dorinate
problens of design and construction. This paper attom;us to share some of

o-r early perceptions about what theqe pmblenm of progrdrnmg and use are.

- fure & &2

t also allovws us to ca-t a historical

FORN
DD %53 1473 e€ormion o 1 nov 63 15 oBsoLETE * UNCTASSIFIED

SE(‘URFTY L‘ ASSIFIC* 7y I' OF Ta S PAGE (vhen Nata ! aters

-

SOME ISSUES IN PROGRAMMING MULTI-MINI-PROCESSORS

A. Newell and G. Robertson
January, 1975

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

This work was supported by the Advanced Research Projects
Agency of tr2 Office of the Secretary of Deferse (F44628-78-C-91873
and is monitored by Air Force Office of Scientiric Research. Auth9rs
address: Oepartment of Computer Science, Carnegie-Mellon University,

Ty

Pitisburgh, Pa. 15213.

SOME I1SSUES IN PROGRAMMING MULTI-MINI-PROCESSORSH

A. Newell and G. Robertson

INTRODUCTION

Large computer systems can be constructed by joining together
meny minicomputers -- creating Hhat can be called
multi-mini-processors. The first such systems are ju'st reaching
the point where problems of programming and use dominate problems of
design and construciion. This paper attempts to share some of our

early perceptions about uhat these problems of programming and use
are. It also allouws us to capture a historical record of our current
viewpcint,

We are not the architects of the multiprocessors we will
describe. We are not even the primary systems programmers, who create
the operating system and operating environment within which the user
operates. We are users of the system. But we are not arms-length
users, as are the users of a typica! university computation center.
For to use such a system one must indeed create a special programming
system on it. Thus we are, shall we say, systems exploiters. We

are just coming deeply into contact with our multiprocessor. We
find ourselves facing many issues of how to exploit the system and to
program it -- of how to make it yield to our will.

First we will sketch the multiprocessors that we are

concerned with. There are only two of them, and we, the authors, are
actually working on only one. With this as Yackground, we will
diecuss seven programming issues.

The role of minicomputers as components of multiprocessor
systems is quite different from their cl-ssical role as laboratory

computers. Though some of these seven issues will seem quite
familiar to those whose world is the on-line laboratory use of
computers, some of them wi.| seem quite foreign. Hopeful ly,
houever, they will paint an interesting picture of a use of
minicomputers that will become increasingly common.

v This paper was given as an invited talk at the 1374 Conference on
the On-Line Use of Computers in Psycholony.

MULT1PROCESSORS

There are only tuo genuine multi-mini-processors, as far as
we know, though there may be others in design. A multiprocessor is
characterized not only by the existence of many processors, but by
the shar ing of primary memory, i.e., the processors address common
memory. This zets them apart from networks of computers, which have
meny computers, but where the intercommunication is essentially from
secondary memory to primary memory, i.e., each computer sees all the
other computers as peripheral devices. HMultiprocessors permit a
degree of computational intimacy not available with ne‘works.

C.MMP: THE CMU MULTI-MINI-PROCESSOR

C.mmp is the multiprocessor at the Computer Science
Departmert of Carnegie-Mellon University (Wulf, 1972). As shoun in
Figure 1, C.mmp consists of 16 PDPll computers connected through a
crosspoint suwitch to 16 primary-memory ports. Each primary memory is
2716 words, for a total memory of a million words. Each processor
still looks |ike a POPll with a 16 bit word and an address space of
2415 words f{actually, 2716 bytes). In fact, a modest modification
must be made to a processor to operate Within the system,

Each of the processors can lay its address space anywhere in

the million words of the primary memory. It does so through an
address relocation box (Omap in the figure), which breaks the addres:
space of the processor into eight 4,836 word pages. Thus the system

has a small number of large pages, each of which may be independently
relocated through Dmap.

Each Pc has its own Unibus, the standard bus structure of the
POP1l. On this hangs 4K of local memory as well as all the
peripheral gear of disks, drums, printers, and connections to the
external world. The last includes a connection to the PNP18, which
is the large general-purpose time-shared computer system in the
Computer Science Department. As the figure stiows, there is also a
large (68-bit 1-nicrosecond) clock (K.clock), which provides a common
reference frame, and an interrupt (K.interrupt) wWhich connects all
proccssors, There is at the moment no suwitching between secondary
devices and the various processors. A disk, for example, is
permanently located with one Pc.

Not shouwn in the figures is the ability to partition tibhe
system, either dynamically or statically (manually), so that it
consists of independent subsystems. Thus it is possible, for
example, to have harduare maintenance going on at the same time that
a user system is operating with other Pc's and Mp’s.

The system, though made up of minicomputers, constitutes a
large computer. Taking processors to be 11/48s yields about .3 to
.4 million instructions per second (mips) per processor, for a total
of S to 7 mips. This compares approximctely with an 1BM 360/158.
There must be some contention for memory as the number of processors
increase, but this is not expected to be large (the Dmap’'s for the

Mp 0
. Smp
-
Mp 15
0 P e 15
Pc Dmap Pc Dmap
Mp I Mp |-
— K¢ Kel—
8 J —)
‘ = K.clock i _
| Klﬂ1 = | ¢ Kia
| K.innterrupt—J
[— =

Figure 1: C.mmp Architecture

11/48s contain a cache).

The system has been operational in parts for some time. The
16x16 switch has been running since March, 1974. We currently have

five 11/28 Pc's operational with 588K of memory. We do not have any
modified 11/48s.

PLURIBUS IMP:

THE BBN MULTI-MIN!-PROCESSOR

The second multi-mini-processor system, the PLURIBUS [MP
(Heart, 1973), has been developed by Boit, Beranek and Neuman to
serve as a high speed modular IMP (interface message processor) for
the ARPA computer network. Figure 2 shous its structure. The
processors are Lockheed SUE minicomputers, which are 16-bit machines
With a 15-bit word address, and which are about the speed of the
11/28. They have a bus structure uhich is similar to the DEC Unibus.
As shoun in the figure, tuo processors are located on each bus, each
With 4K of local memory. Thus the figure illustrates a 14-processor
system, the maximum size for which the PLURIBUS IMP was designed.
(The number was determined by the application, not by harduare
limits.) The primary memories come in 8K units with two units on each
memory bus. The switch is distibuted, un!ike the C.mmp which is a

monolithic device. Thus, iinks run betueen the busts of the
processors and the buses of the memories; any pattern of access can
l be obtained. As the figure shous, there are also 1/0 buses which are

‘inked in similar fashion.

An initial system has been running at BBN since mid-74. [t

has operated with a range of configurations (up to the 14 shoun). A

1 basic design objective uas to create a modular series of IMPs, which

could be tailored to the processing load of the network node. Though

deliberately designed for a specific app'ication, the hardware

structure is quite general. It poses many of the same basic issues

we face un C.mmp, and the approaches taken on the PLURIBUS [MP offer
interesting contrast points with those taken on C.mmp.

(€L61 ‘3aesy woay paidepy)

" diW1 SN8I¥NTd :2 3:nbiy

NN

sne o/1 _ _mM m__ JE 3 ¥3MOd sna nst
L
nin
S EICELICEL v|A1adns
w_u n—uv _:u._ %| 4le|uamod
1 |
_ HEE IR N, |v|x1ddns
ala|ue | we | %[%laluamod
did|4 In [n
SISISman|wan v|aiddns
3 |n !:_:.L:_ *_ mn_u_ iv | av |9 % |e|uamod
"0 5 uT N B uﬁﬂ v| Alddns
gle|a|e|a|alaja] @ ¥3mod : =
i did|d
i S15(5MIn|wan N 1N vlrddns
. aln w_ At | wv %] % ie[uamod
s§3ssne
AHON3IN] _
did nin
2 .w u:_:u: ViAlddns
WNWIW[A [n_ glaja *¥ | #¥ | 9| %8| wamod
il Lo L B B i B o U PR PR
8 | %9 |glala|a|e|alalel| ¥3moL =
.]
d[dld
ANNININ [N Alddn
| Eha e asass
1 | .
31513 Im3nm wanin, [0 fv]ivgan
alal *¥ | ¥¥| % 95l8| y3amod

(1) S3SSN8 HO0SS3J20¥d

ISSUE 1: HOW TO EXPLOIT A MULTI-MINI-PROCESSOR

Th2 first issue is simply how to exploit a multiprocessor,
since it is a laryge sysic. in terms of pouer, memory and banduidth.
It has special structural characteristics, which are easy enough to
statc, but nit so easy to translate into performance consequences.

One might say there is no issue -- simply use the machirne.
But the quustion is 1ot laid to res: so easily. Different
strategies of e«ploitation require that effort be spent in different
ways, thus precluding following alternative paths with any

efficiency. Indeed, ‘he issue as posed makes it sound |ike the
multiprocessor arrived sui generis Wwith the question of use fully
open. That is not the case. The exploitation strategy is chosen

before the design even begins and effects many of the structural
features of the syst .. The actual situation is more |ike making a
movie. Constructing (he harduware system is iike filming. Using it is
1ike producing the movie in the editing room. The final editur is
free to make any kind of movie he wants, but he must work with the
film given him by the director.

There are three main strategi s for exploiting
multi-mini-processors. We take up each in turn.

PROGRAM 1T FOR A SPECIAL TASK

The first strategy is to view the mul‘iprocessor as a
specialized device created to do a specialized task. Harduare and
softuware are to be combined optimally to perform that specialized
task.

This in essence is the stategy followed by the BBN group in
designing the PLURIBUS IMP. The task existed ahead of time in a well
defined form -- the AR?A Net is a functioning system with a
minicomputer (the Honeyweil 516 and 31i6) as IMP, and much
experience, both statistical and qualitiative, has beer gained with
the requirements for an [MP. What was needed was an efficient and
highly reliable implementation that could be scaled to the task. All
thie information existed prior to design time, and the software anc
harduare ware designed together in apparent total harmony.

The effects of this can be illustrated by what is surely a
striking feature of the PLURIBUS IMP -- it has no interrupt! There is
no way in which an arbitarily occuring external signal can cause the
system to attend to another task. Since the interrupt was

introduced in the late Fifties, it has been considered as manadatory
as 1/0 channels. Abandoning the inturrupt is an important design
decision.

The wunderlying rationale is very sinyle. The algorithm
to be programmed was well understood and existed in code form before
the harduare design began. Oectailed anaiysis of the program revealed
that it could be partitioneu into segments that never take longer
thran 308 microseconds. Since the responsiveness of the system

fits the ograin of 308 usec, all processes can run to completion
Wwithout interruption.

Co-equal with the short program segments is the necessity of
getting new tasks assigned to a processor. |f this takes any
appreciable fraction of 308 usec, then the overhead defeats the
scheme. The B8N group developed a device called a PID (Pseudo
Interrupt Device). This harduare device holds a set of numbers,
corresponding to tasks, which have been given it at arbitrary
moments. The device instantly delivers (and deletes) the highest
number, corresponding to the highest priority task,

Interrupts take appreciable time le.g., for changing
processing contexts), which is avoided by the PLURIBUS IMP, along
Wwith a fair amount of operating system code. In fact, the system

does not have an operating system in any general sense of the word.

The necessary functions are distributed carefully, such as by (he
PID.

This seems highly specialized. [ndeed, that is the point, If
viewed as a device to achieve a narrow, well-defined total task, such
specialization is possible. Furthermore, though we know of no
estimates of the gains made to ine PLURIBUS [MP by such
speciali-ation, we estimate that they are impressive,

s a final footnote, the motive of specialization does not
condemn the results to be equally specialized, though that must be
the fate of most specializations. But the PID and the associated
concept of presegmentin the code into run-to-completion steps may

not be of such limire. generality -- though it does pose an
interesting compiler problem,

STANDARD USER ENVIRONMENT

The second strategy is to view the multiprocessor as
providing a standard user environment, much as any other computer
does. Thus, when completed with operating system and user facilities

such as file systems and |anguage processors, the system uwill look no
different to the user than your local computation center. On!y douwn
in the boiler room, so to speak, will the multiprocessor design

become apparent.

Indeed the tuwo specialized flavors of mul tiprocessors that do
exist in quantity are used in exactly this way. One is the use of
1’0 processors; the other is the use of dual central processors. In
both cases, they simply handle more efficiently the total set of
tasks that has to be done for a general user shop. An interesting
example of this is the COC 6688 which has a large central processor
surrounded by ten miniprocessors. With few exceptions ‘hat we knouw

of, it shows up simply looking like a very power ful general computing
system.

With this vieu the real questions are the economics of

multiple smaller processors versus the single larger processor for

obtaining a given number of Mips per dollar, That s of course
aluays the question in Computation, but here no specialization comes
from specific applications.

MULTIPLE SPECIALIZED APPLICATION SYSTEMS

The final exploitation strategy /s to view the multiprocessor
as @ system in which a number of specialized application systems will
be realized, both simul taneousiy and over time. Each of the
application systems uili be adapted to the structure of a
multiprocesser in order to take as much advantage of it as possible.
This is the view taken uith C.wmp, and our discussion reflects
essentialiy the considerations that have arisen with respect to
C.mmp.

First of ali, this strategy leads to a general operating
system, since several app.ications wu, ve running simuitanecusiy.
Even if ue envision some "production mode"” uhere one application
might dominate the system for a period of time, throughout most of
the 1ife of an application systex one is coding, debugging,
modi fying, developing and exploring. For tris one neither needs nor
Wants the entire multiprocessor. The operating system of C.mmp is
called HYDRA [Wulf, 1974.;: we will oescr ve some of i1ts features
after introduc ing another important consigeraion,

It small address spaces tthose of the Pc's) are to move
around in large memory spaces (tnat of the million-word Mp). then
there must be a memory mapping. D.map (see Figure 1) accompiisres
this for C.mmp and BCP (see Figure 2) aves so for the PLURIBUS IMP.
The important design guestion s the nature of that mapping. An
attempt to build a genera: user system lecds to making that mapping a
general demand-paging scnewe. Thus all aodresses go through a

dynamic process of discovering whether the page is in memory and i f
not bringing it into memory, transiating the processor address intc
the physical address in tne merory. Thus has evolved the general
virtual machine concept 'n mouern computing.

C.mmp does not nave a demano-paging scheme (nor does the
PLURIBUS [MP) . One reason arises from the strategic view under
discussion, Paging scremes are expensive (in time), more so than
simple reiocation schemes. Thus, to put a paging scheme 1n the
harduare is to agree to make every user pay this cost. At this point
one has eiiminated some of tne important possibilities fo-
adaptation, For not only the cost goes up, but everyone will ve
subject to the same paging system with 11s particular cost profile,
whether 1t fits the neeos of their particular system or not.

Thus uhat we fing n C.mmp 15 a so-cailed "farye page"
scheme, in wuhich there are only eight pages, each large enuugh to
hold a substantial subsystem (4K words). Tne use of this page system
is then ieft to the user. There is a zost, tor insofar as paging is
necessary, it must be detected and executed bu softuare. But in
return, ue obtain the possibility of fitting the paging system to the
application system. That is, insofar as pages can be left in place we

Directory
Subsystem

v /

Figure 3: HYDRA System Organization

pay minimal addressing overhead,

HYDRA: The C.mmp Operating System. Let us nou return to
describe the operating system, which has been designed in part with
the strategic choice of making multiple application systems possible.
inere are several aspects to HYDRA that strongly reflect this
strategy. One can be seen in its overall system organization,
shown in Figure 3, There is a Kernel to the system, shoun in tre
bottom part of the figure. This performs tuo essential functions that
cannot be delegated to subsystems, One is the protection and
security of the resources in the system. This is indicated in the
figure by the Global Symbol Table (GST Active and GST Passive, the
latter being the collection ot those resource entities not currently
in use), The other is a basic mul tiprocessing system that
divides up the resources ina simple way. This is indicated by
Kernel Nultiprocessing System (KMPS), and by the processes that
manage the set of pages in core (CPS), a primitive 1/0 system (1/0),
and an interprocess communication system (MSG).

Thus HYDRA allous different high-leve| operating systems,
callied policy-systems, ‘o co-exist. A policy-system has
associated with it a policy module which makes decisions for KMPS
about scheduling and paging, and a set of user facilities (e.g.,
command interpreter, file system, terminal hand!ing sustem). When a
user of HYDRA first logs into the system, he may request a particular
policy-system. 'n this Hay, operating systems can be ‘ailored to the
specifications of indiviaual applications systems.

An application system: Speech Understand[gg; An illustration
of an application system will show the reason for &an entire
Co-operating system, and also what it might mean to fit an
2pplication to a mul tiprocessor organization.

A speech understanding system is a system that takes in an
utteranc: and determines the meaning of the utterance in the light of
a specific task context. Such systems are being constructed at
severa! places [Newell, 1973]. One of these efforts s at CMU and
We are pursuing it independent |y of any interest in multiprocessors.

But we are also attempting to construct a multiprocessor
version for C.mmp, and it forms the initial application system.
Figure 4 shous the conceptual structure of this system, called
HEARSAY-2 [Lesser, 1374). The basic structure of the system revolves
around a global data structure (the blackboard) and a set of
cooperating paralliel processes (the knov ledge sources), Each
knowledge snurce has expertise in dealing with some particular aspect
of speech tnderstanding., A knowledge-source process s invoked when
some particular pattern in the blackboard is noticed (a
precondition). The knouledge source then deals with data in the
blackboard and usually makes weighted guesses about what it has seen.
There is a controlling process that watches the act'vity of the

10.

11.

SEMANTIC

PROCESSES
SYNTACTIC ‘ LEXICAL
PROCESSES PROCESSES
Y . :’
BLACKBOARD
i
ENVIRONMENTAL i FEATURE
PROCESSES | EXTRACTION
, PROCESSES
PARAMETRIC
PROCESSES
INDUCTION MODEL

Data Directed
Information Gathering
Hypothesize and Test
Parallel and Independent
Ceactivation Simple

Figure 4: HEARSAY-2 Conceptual Structure

various knouledge sources and uses the collectively wsighted guesses
to eventually understand an utterance.

The HEARSAY structure lends itself to a direct decomposition
into parallal processes to take edvantage of a mul tiprocessor
crchitecture. Each know!edge source can be a seperate process and in
many cases multiple cobies of a given knowledge source can be used.
Having several sources of know | edge simul taneously Wworking yields
significant improvements in the time it takes to recognize an
utterance. This is particularly important since the ultimate goal of
such systems is to recognize speech in real time. The HEARSAY
structure thus allous for effective use of a closely coupled
mul tiprocessor where a large common data base can be easily accessed
by a large collection of processes.

In a large system |ike HEARSAY, it may be necessary for
special scheduling algorithms or paging strategies to be emp l oyed.
For example, the initial operating system built on top of HYDRA does
not provide for priority classes in scheduling. The large collection
of processes the make up the HEARSAY system may very well need to be
priority ordered to obtain the desired effects. The important point
is that HYDRA does allow for another operating system to co-exist
With the initial one that most users wWill use. Thus, we expect

HEARSAY to develop and use its oun operating system built on top of
HYDRA.

CONCLUSION - STRATEGIES

It is important to realize that of these choices, no
particular one is "right". Each is an attempt to maximize the
payoff for specific, but different, goals. The first choice, that
taken by the PLURIBUS IMP, attempts to maximize the efficiency and
reliability for a specific task. With the second choice, that of
building a general computing environment, cne is trying tc find the
most efficient way to construct a certain environment. If
mul tiprocessors can compete for that environment, they can be an
implementation of choice and mul tiprecessers shouid be designed to
meet that demand. The third choice, that taken by C.mmp, attempts to
gain the advantages of specialization but over an unknown range of
application systems. It must necessarily trade off some
possibilities of specialization against a system that can handle
several such applications simul taneously. Similarly, it must trade
off the best scheme for general computing in order to permit
adaptations to occur.

Nor are the choices mutually exclusive in the sense that if
you choose X you are precluded from the same applcations that choice

Y permits, Speech systems will be brought up on general purpose
systems. (We are creating a version of HEARSAY-2 on our POP13.) UWe
Wwill be creating a general user environment on C.mmp, which will run

simul taneously with our work in speech. And we would certainly not be
surprised to see the PLURIBUS IMP used for other applications quite
remote from the message processing task.

12.

13.
y does bias the application potential of

reasoris for making design choices
ystem adds up to something, at least along

The choice of strateg

a given system. It gives
consistently so that the s
some dimensions.

ISSUE 2. HOW TO GET ALL THE SOFTWARE

The second major issue is how to obtain all the softuware that
is needed for such a system, By now we are all aware that it takes
an immense amount of software to maka a computer system livable. In
practice such softuare only arises with the develcpment of a large
and active user community, plus the continued efforts of the
manufacturer over severai years. No general preaching on this fact
should be necessary in a minicomputer user community where new

systems arrive from the manufacturer rather bae, despite advertizing
claims,

The muiti-mini-processors are composed from existing minis
(C.mmp from an extensively used system, the POP11l; PLURIBUS IMP from
a8 ned machine, the Lockhe=d SUE} and programs exist fo~ these minis
as stand-alone systems (many for the POP1l, fewer for the SUE). Yet
these do not go very far toward satisfying the need. First, all such
systems must be reconditioned to work in a multiprocessor
environment, To do this in a way that exploits the multiprocessing
is a genuine system-programming problem. But further, these
multiprocessors are big systems with big memories and they can use

softuare systems commensurate with that power. All this adds up to a
major problem,

There are several approaches to obtaining the software. Even
more than wuith the strategy of exp'oitation, these are nc¢ mutually

exclusive. In fact they form an armatorium and all should be used
{and pretty much are on C.mmp).

CODE 1T IN ASSEMBLY LANGUAGE

The first approach is to use the minimal tcols provided by
the manufacturer. BBN has implemented the PLURIBUS IMP in this way.
A simple assembler was used for all programming. A straight-foruard
loader was used to transfer code to the machine. And finally, a
relatively simple debugging system was used. ihe debugging system
had no multipie-process capabilities., If the amount of software

that must be produced is small, this is certainly the quickest
approuach,

CODE 1T iN A HIGH LEVEL LANGUAGE

The main approach used by the implementers of HYORA for C.mmp
~as the use of a high level language -- BLISS [Wulf, 1971]. BLISS is
an ALGOL-1ike system implementation language which is available for
both the POP.8 and the PDP11. I't has an optimizing compiler that
produces object code which in some cases is better (more efficient)
than code produced by a system programmer using assembly |anguage.
For larger softuare systems, it s desirable to use a high level
language. Such a language usually allows for much greater pronrammer
productivity and for systems that are much easier to assinilate and
maintain. In conjunction with the high fevel language, one generally
finds more elaborate relocating loaders and debugging packages. The

BLISS debugging package, called SIX12, allous for syrbolic debugging

of multiple processes, and for source language routine level
debugging.

There is little doubt about the Success of this approach. Not
only is the operating system running, but we have Some measurements
Which shou the productivity of the HYORA software team to be very
good, both in terms of number of debugged machine instructions per
man-month and in terms of the number of BLISS statements,

COUPLE TO LARGE COMPLETE MACHINE

If a large com~uter is coriected to tpro multi-mini, much of
the softuare deve lopment can te asne using .he convenient user
facilities of the large computer, Cross-assemblers, cross-comp'lers,
elaborate linking loaders, a file system, and simulation packages can
all be implemented and used more easily on a large computer than on a
mini, The HYORA development made use of all of these Capabilities
Hith a P0P1@ that is connected to C.mmp, Thus g large computer
greatly simplifies the problem of softuare development., This is
especially true in the early period when the harduare system is still
under development and somewhat unstable,

But the key to making use »f a coupled large computer isg that
Some of the software can be delayed or avoided altogethrr by using
existing systems on the large computer. For instance, o.e can take
advantage of the file system on the large computer in lieu of one on
the multi-mini, I'f the multi-mini also has a file system, files
could be transferred between the two, and the facilities used in the
large computer become more directly accessible to the multi-mini. As
another example, there are .no immediate plans to create a BL]SS
compiler on C.mmp. Use of a BLISS compiler on the POP10@ appears to
be stable and efficient. Ultimately, we uish to explore how to adapt
compilers to a multiprocessing environment; put the important point
is that such a project is completely off the critical software path,

GOOD-KERNEL HYPOTHES!S

There is an (as yet untested) hypothesis that if one builds
the kernel of the operating system correctly, the higher level
operating system facilities and application programs become much
easier to implement. To some extent, HYDRA is the first test for this
hypothesis, If the HYDRA kernel has the right set of basj-
facilities, building operating systems on top of it should be very
simple compared to building the same operating systems on the bare
machine,

The impiemertation of a file system s an example of this
Phenomonon. HYDRA's Global Symbol Table in conjunction with a simple
directory structure allows one to maintain permanant storage o
simple objects. In order to build a file system on top of this, one
simply needs to define a new object, called “file", which contains
the representation of the file. The directed graph structure of the

15.

Recognition

Structure
Building LANGUAGE

ENVIROMENTS

Figure 5: L* Facilites

Space
Accounting

Compiler

Macro
Assembler

M

GST allows ¢or €asy construction of hierarchical file structures.
To build the #squivalent hierarchical file structure on the bare
machine is a very time consuming project.

INTERACTIVE SYMBOLIC IMPLEMENTATION SYSTEM

Ano ther apprnach is to use an implementation system that
provides a total operating environment within which one can build the
application system interactively., Ue have been experimenting with
such a system, called Ly (Newel |, 1971), for several years, Figure
S illustrates the kinde of facilities that are available to an Ly
user. The system has a kernel which provides an initial set of types
and facilities for manipulating each type. It also provides three
initial languages which are used to construct a large set of user
facilities (e.g., editers, debuggers, compiler, assembler). The major
‘eatures of Ly that make it attractive are:

1) Ly is a total environment so that one need not rely

on other systems to produce the required suftuare,

2) Ly is Completely accessible to the user to modi fy

and adapt to his oun needs,

3) The surface syntax of the language s easily

modified by the user.

4) The system is interactive and buijlt around a symbo |

manipulation language.
One has much the same feeling as in a system |ike interactive LISP,

even 1{nough one is Horking on implementing extremely basic systems
programming features,

We performed an experiment with L on C.mmp during April,
1974 (Robertson, 1974]. A small team of programmers (varying
betuween one and three) uas given the task of building a speech
pre-processor that would take input from a real-time audio spectrum
analyzer, sample the data, segment it into phonemes, and label the
segments; the result to be dispiayed in real-time on a graphics
display processor (see Figure 6). The demonstration was intended to
graphically illustrate the speed-up when more processors were added
to the multiprocessor system.

The experiment lasted for one month, We initially wanted to
run the Ly system under HYDRA, but were unable to because HYDRA was
not yet ready for end users. We constructed a stand-alone Lv system
for Commp and within that system build the Speech demonstation. We
designed an interface between L and BLISS so that the sampler,
segmenter, and labeler could be written in BLISS, We also built a
specialized multiprocessing system which had the unusual
Characteristic that it Was not alsc ga mul tiprogramming system. The
end result of the experiment was a demonstratable multiprocess speech
pre-procecsor. The important point is that a large amount of sof tware
Has produced in a short period of time by capitalizing on the
advantages of a good interactive symbolic implementation system.

Mic —>ASA

Figure 6: April-74 Software Experiment

CONCLUSION - SOFTWARE PRODUCTION

All
a multi-mini-processor are impor tant,
set of softuare tasks wuwhere it is better than
approaches. It is thus important that
rich esnough to allou the use of any or a

the various approaches to producing requisite software on
For each approach there is a

any of the other
the multi-mini environment be
Il of these approaches.

19.

T U e —

ISSUE 3: SMALI.-ADDRESS PROBLEM

The third Major issue is how to take advantage of the large
memory in a multi-minj Wwith the smal| physical address space of a

mini, On C.mmp, fe- instance, each nrocessor :an directly address
only 32K words while the primary memory capacity of the systen is one
million words. Anyone who wants to grow programs ver than 32k
is forced ‘o make serious design decisions about programming
effort, Furthermore, since the la-ge memory is avalable, large
applications wil| be attracted to the multi-mini ang the problem wil |
occur frequentiy, A large number o¢ solutions have been suggested
and attempted. For small or wel | -behaved systems, there are
solutions that work well, However, for 4 large, dynamic

pProgramming system, al| the solutions considered so far tend to be
either restrictive or costly in overhead.

STATIC DVERLAYS

The most successful solution to this problem has been to
overlay pages using relocation registers (Dmap on C.mmp). HYDRA and
the latest version of L both use this solution, The overlays must
aluays be in the same place to avoid address transiation. It the
overlays contain only data, as in large arrays, there i8 Nno address
translation problem. Houever, most large programming systems have
data which contains many address references, and these must either be
over |ayed statically or incur address translatior costs, In any
rfase, code pages aluays face the problem. This solution seems to
work wel, particulariy for small or well-behaved systems.

However, there are cases in Ly and in some large programming
systems where code in an overlay attempts to access data or code in
another overlay which must reside in the same physical addresses.

Static overlays prevent this from working correctly, The other
Problem with thig solution is the overhead incurred in changing
relocation registers, Large systems are likely to want to change

relocation registers frequentiy, thus making the overhead critical,

POSITION INDEPENDENT OVERLAYS

Another solution similar to the previous one is to use
overlays that contain position independent code and data. This frees
you from the restriction of aluays bringing the overlay into the same
Physical location. The primary probiem with this solution is that
position independent code and cata tend to take more space, execute
more slowly, and be harder to produce. The solution assumes that the
under lying processor in the muiti-mini alious for relatively low cost
Position independent code (as does the POP11),

SOF TWARE DEMAND-PAGING

Another kind of solution s to provide software
demand-paging. This involves accessing data with "fat addresses"”,

— e

21.

e.g., 32 bits of effective address that determine a page and an
offset within that page. It also involves meking any code that
crosses page boundaries go through both demand-paging and address
translation. We tried this solution in an early version of Lw. This
solution takes more space and has some position independent code
which is harder to produce. It also suffers from severe overheads for
the demand-paging and address translation. Its great virtue is that
it provides a truely general system; one where the entire large
memory is directly addrensable.

MIXED SOLUTIONS

The most promising approach appears to involve mixing several
of the previous solutions. There are two basic Hays to do this. One
method would start with a software demand-paging system (fat
addresses) and allow for some pages to be specialized (i.e., have
small addresses for efficiency). The other method would start with a
static overlay structure and build up mechanisms to allow for
arbitrary virtual addresses (pseudo-fat addresses). We are currently
Horking wWith the latter of these methods. We have constructed the
latest Ly system with a simple static overlay stri'zture. MWe are now
in the process of designing the mechanisns necetsary for certain
facilities (e.g., compiler) to be able to access arbitrary virtual
addresses. The main problem now is to determine whether a large
application system |ike HEARSAY-2 can be decomposed into small
overlays that don't need direct access to each other except on rare
occasions. It remains to he seen whether this solution is adequate
for large systems.

ISSUE 4: PROTECTION

The forth major issue is protection. The style and amount of
protection in a multi-mini operating system depen”s greatly on which
strategy is chosen for erploiting the multi-mini.

NO PROTECTION

The PLURIZLUS IMP represents one end of the specrum, The
decisicn to build a sprcialized system for a specialized mult -mini
led BBN to provide ro protection at all. The ass.aption here is

that there is only one application system running and it was built by
a small, closely-knit programming group. Every module in the system
must be aware of other modules and their conventions so that they
don't get in each others way. There is also an assumption that the
system is small enough to be easily debugged. A module with o bug
could accidentally destroy another module. If there are toco many
modules (or they are too complex), it may be very difficult to find
the incorrect module. This solution generally works well only for
small and well understood applications,

AUTHORI TY-BASED PROTECTICN

At the other end of the spectrum, the decision to allow many
(unknouwn) applications to run, with program development occurring
simul taneously, leais to great concern with protection, both pet seen
users and between various processes being run by one wuser.
Protection con be viewed as a central issue of operating systems;,
i.e., the control of resources, the distribution of the rights to use
these resources to various processes on a moment-to-moment basis, and
the guaranteeing of these rights. Most of the first and second
generation operating systems, such as the existing DEC systems
(TOPSTEN and TENEX) and the IBM 0S368, are so-called authority-based

systems, In these systems, protection is associated vith the dota
and not with the processes accessing the data. This tends toward
crude categorization of protection (e.qg., the familiar
read/urite/read-urite distinction). There are currently no

multi-mini systems that use authority-based protection, although it
is clearly the alternative that would have been used a few years ago.

CAPABILITY-BASED PROTECTION

HYORA is a capability-based system, which means that it
associates rights to use resources with individual processes and not
Wwith individual dats. Capability systems permit much finer
distribution of rights, essentially on arbitrary processes. We are
only just beginning to see capabi lity-baced operating sustems, and
this aspect of HYDRA represents an indepencent research effort.

HYDRA has an abstract view of the entities that can be
protected and the rights to manipulate these entities. Because of
this, it is possible to build higher levei protection into

specialized subsystems. This is another aspect of the HYDRA design

that reflects the basic exploitation strategy of multiple specialized
application systems,

There is a subtle disadvantage with capability-based systems
that we are learning the hard uay. You generally must do much
planning in a session to insure that you uill have all of the

capabilities you need. |f your program has a strange bug and you
don't have the proper “ights or capabilities, you may not be akie to
explere the bug. At this point, we lack the experience With HYDRA to

knc. shether the advantages of such a protection sustem outweigh the
disadvantag=s or not.

General iy, there is a computing cost associated with
protection and the more protection, the higher the cost. This leacs
the user of an over-protected system to find ways of avoiding the
protection mechanisms, Houever, with an under-protected system, the
user tends to lose much work when something that belongs to him is
destroyed by someone else. He also tends to lose
d2bug complex systems uhen the various parts of the systems are not
protected from each other. Finding the correct balance of protection
is both important and difficult, and we expect this issue to become
more visible at T.mmp gcts more and mors use.

time trying to

23,

ISSUE S: TIME-CONSTANT PROBLEM

The fifth major issue has to do with the time constants for
basic fur-cions that must be performed on any multi-mini-processor,
This is actually a class of problems, one for ecch appiication system
against the pattern of bas = time constants. For this reason we
cannot enumerate general alternatives, but must select illustrative
issues that arise for particular examples. The important point is
that the time constants have an immense influence on programming
style and system design.

Consider two basic ways of building a large programming
system: 1) have one process that has many overlays and does a great
deal of relocation register changing; or 2) have many smal | processes
that communicate with inter-process communication and don't ever
change reiocation registers. In HYDRA, relocation register changes
are about an order of magnitude faster than inter-process
communication, so the correct chuice is the first way. Functionally,
many intercommunicating processes may be the preferred way to
organize the system, but the time constants preclude it. The time
constants may have more impact on design decisions than the
functional characteristics of the operating systenm.

Another example of this problem has to do with prevention of
deadlocks, a pervasive problem in all rultiprocessor systems. The
HEARSAY system wuishes to have a large data base shared betueen many
processes. In order to prevent a process from having the data it is
working with changed by another process, semaphores are used to build
locking structures around -~elatively small pieces of code.
(Semaphores are a standa~d device to avoid interference between
processes; they are flags that indicate whether an object, e.g9., a
piece of code or a piece of data, is in use oy another process.) The
problem is that the operations on semaphores that HYD3A provides are
much too slow relative to the frequency of use and size of code they
are locking. Because of the time constant, we had to build another
level of semaphore that would only make use of the HYDRA semaphore on
rare occasions. This is an example of a functional capability that
could not be used because of the time constant problem.

Another place uhere the time constants become critical is in
real-time applicatione. The basic functions like context swap,
relocation register change, inter-process communication, and
interrupt nandlin; take tiuch more real time on a mini than on a large
computer. The difference can be attributed *to the differences in the
rau processing power and in the complexity of instruction sets. When
these differences are taken into account, the relative overhead on a
mini and a large computer are about the same. However, the real-time
overhec ™ becomes critical wuhen doing real-time computation, or when
minimizing terminal response time.

The time-constant problem thuc comes down to understanding
the time conc.unts and their relationships with respect to a given
application systenm, This understanding is necessary if the
application system is to make effective use of the multi-mini. The
problem exists in all computar systems, of course. But it is much

more critical in systems with highly flexible and generai operating
systems (such as HYDRA). Such operating systems provide functional
capaoilities of great power and elegance, but the time constants
often deny their use. The situation is especially critical in
multiprocessors uhere exploitation of the system requires working
With many processors in some coordinated scheme. This can only be
done by working through the operating system. It is almost impossible

in a multiprocessor to avoid the time-constant probliem by Withdrauwing
to your oun world to avoid interaction with the operating system.

ISSUE 6: RELIARILITY

The sixth major issue is total system reliability.
Multi-mini-prccessors are complex, and much can go wrong in both
harduare and softuare, Also, the harduware that provides for

multiprocessing provides redundency, which if exnloited can permit
more flexibility in recovering from har.dare failures. Because of
these factors, reliability plays an important role in all
multi-minis, There ai'e several known approaches to the
reliability problen.

CRASH AND DUMP

The most common approach in existing large computer operating
systems is to bring the system to a grinding halt when a failure is
detected. The system is usually dumped at this point so that system
maintainers can try to determine what caused the failure. Then a
fresh copy of the system i3 brought up. The obvious flaw with this
strategy is that all users lose their current run, even if the
failure would not have otheruise affected them. This approach is
slowly disappearing as more experierce is gained with smooth recovery
from failures,

AMPUTATION AND EXTERNAL BACKUP

The PLURIBUS IMP stresses reliability as its most important
attribute, Their system is highly modular and redundant. Every
structure in harduare and software i1s isolated and duplicated. The
system makes periodic validity checks and amputates any structure
that appears suspicicus. [f the amputation causes some data to be
lost, an external backup provides the data to be dealt with again.
The interaction betueen an IMP and the ARPA Net involves much
handshak ing. When data is accepted by an IMP, it acknouledges the
reception. If no ackroaiedgement is received within a certain time
frame, the data is sent ac-‘n, In this way, data is distributed
across all IMPs in the network. Thus, the specialized nature of the
application, in this case the ARPA Net, provides an external backup
for lost data, no matter what the cause for the loss. This permits
good solutions to the local reliability problem.

The reliability of the PLURIBUS IMP is so high that the
first time the system was ever brought up they discovered that the
only way to stop it was to pull the plug on the whole system. Since
then, their system has groun to be one of the most reliable known to
us.

RECOVERY BY RECONSTRUCTION

The nature of reliability on C.mmp and HYDRA is quite
different but still very important. The stress in HYDRA is on
recovery after a failure has been detected. C.mmp does not have the
kind of backup that PLURIBUS IMP has with the ARPA Net. The method in

26.

HYORA is to maintain = global symbo! table (GST) which contains
information about every structure in the system. The GST is
maintained so that any destroyed structured can be recreated,
including parts of the GST. To detect failures, (he harduare has
been modified to do parity checking and the software maintains
checksums of all critical structures. In addition, whenever an error
is detected while running a user system, the error information is
passed back te that system. Thus, the end user can build reliable
application systems, HYDRA's reliability is still under research and
its success has not been fully determined.

PARTITIONED SYSTEMS

Another aspect of reliability in C.mmp is the ability to
partition the system into several smaller systems. This allous
Concurrent system development, general wuser facility use, and
hardiare maintance and development. The PLURIBUS IMP can also be
partitioned, but only by recabling. The C.mmp partitioning i«
controlled by switches and is changed on very short notice (a couple
of minutes). This ability is being used on a day-to-day basis to aid
is selecting a stable configuration of C.mmp. We also use it
frequently to allow several groups to work independently.

ISSUE 7: PERFORMANCE EVALUATION

The last major issue is how to analyze and evaluate the
per formance of running systems on a multi-mini-processor. This issue
is perhaps the least understood of all of the issues. Programmers are
notoriously wrong in guessing uhat their programs are actually doing
and where the time is really going. There is reason to believe that
on a multi-mini, the problem is going to be much, much worse. The
decomposition of algorithms to take advantage of parallel processing
is currently a rich research field. Imagine how difficult it will be
to determine the dynamic characteristics of several cooperating
parallel processes.

Traditionally, the analysis of performance of a computer
system or a program is undertaken as a study. Often this study is
primarily of academic irterest, though sometimes wWwith a view to
balancing the computer system or making the algorithms run more
efficiently. Houever, we believe that for multiprocesscrs there will
be a major shift in emphasis of performance evaluation from analysis
tools to operational tools. They will become as important to a
mul tiprocessor user as the traditional debugging tools.

The solution to the problem on C.mmp has been to start a
research project on a harduare device, called a harduare monitor
(Fuller, 1973], uhich will allow us to measure specified kinds of
activity on one processor's bus. This device, used in close
conjunction with softuare in HYDRA, should give the user a chance of
obtaining the dynamic job statistics he needs to analyze the
per formance of his programs. We also hope to use the device to help
understand the real performance characteristice of HYORA in order to
improve system performance.

An example within HYDRA illustrates the use of the harduare
moni tor. We have a real-time device that connects C.mmp to the POP10.
We recently discovered that characters we~e occasionally being lost,
presumably because HYDRA was running blind to interrupts for too

long. HWe were able to verify this with an oscil loscope. However,
Wwe have not been able to find the code in HYDRA responsible for the
excess blind time. We expect the hardware monitor to be able to

isolate the of fending code. The important point is that a multi-mini

is so complex that neu techniques must be developed to aid in
per formance evaluation,

28.

CONCLUSION

Though other programming issues could be discussed, seven is
all anyone should be called upon to remember. Let us sum up.

We believe that multi-mini-processors such as C.mmp and
PLUR:3US IMP 4ill come to provide a substantial amount of
computational pouer. Although the technical capability for
creating mul tiprocessors has existed for quite awhile, only with the
development of the minicomputer (and now the microprocessor} has the
cost-benefit structure pointed to multiprocessors as an impartant

technical solution. As a result we know almost nothing at this
point about the actual programming and use of genuine
multiprocessors, i.e., those where the multiprocessor st-ucture is

sufficiently general and available to affect the structure of
application systems,

Several of the issues ue have discussed in our list, e.g.,
how to get all the softuare, protection, reliability, and performance
analysis, are well recognized problems and are subject to intensive
independent research. The work with multiprocessors gives them a new
tuist, houever, raising to consciousness aspects that are of little
interest ir other kinds of systems. Thougyh still speculation on our
part, perfarmance analysis as a real-time dynamic debugging too!
represents a new world,

Tuo items on our |ist, the small-aadress preolem and the
time-constant problem, do not represent areas that are uwell explored
in computer science. We have seen no solutions to the underlying
programming issues in the literature. Both items seem critical and
worthy of considerable attention,

The sma!l-address problem seems inherent in mulitprocessors

built with mini- or micro-computers. Possibly the problem will be
solved by avoiding it. Some neuw minis are appearing on the market now
with large physical address spaces but maintaining the other

attributes of a mini. However, a large a. ess requires many bits,
both in memory to retain it and in bandui. 2 to communicate it.

We might point out to psychologists trhat the problem is in

essence faced by a population of intercommunicating humans. No one
has internal symbols (i.e., addresses) designating all the things
that all individuals designate internally. That is, they do without
large adiresses in the harduare. Instead they use language, which

is a set of software-maintained large addresses, for their
intercommunication. They continue to think their private thoughts in
separate representational worlds. Thus the problem of communicating
With small addresses is a fundamental one not restricted to the wor |d
of multi-mini-processors.

The time-constant problem seems critical if we are to make
effective use of nultiprocessor architectures. He must
understand what various patterns of relative and absolute time
constants imply for the processing systems built on top of them. Only
then can wWe design multiprocessors wuwith a balance between their

e

functional capabilities and the dynamic capabilities {i.e., the speed
Wwith which they carry out various functions). What can be done within
a system which has already been designed is stil| quite unclear. Some

overheads, such as sWapping time,
Others, such as protection,
betueen flexibility ana comput
example,
so that a

are built into the harduare.
may be subject to ingenious trade-offs
ing cost (for checking protection). For
one can think of compiling out restricted protection schemes
minimum of checking has to be done dynamical ly.

We have attempted to expose a set of programming issues that
We have encountered in beginning to use a multi-mini-processor. We
confess our fundamental ignorance of the correct formulations -- to
say nothing of the correct solutions -- for most of these problems in
this new environment. Perhaps these will no longer look like the

important problems after we obtain more experience. That experience
is now enveloping us day after day.

30.

REFERENCES

(Fuller, 1973])
S.H. Fuller, R.J. Swan, and W.A. Wu!'f
The Instrumentatio;ﬂoy,'.mmp: A Multi-Mini-Processor

Proceedings of COMPLAY 73, New York, N.Y., March 1973,
pp. 173-176

v
(Heart, 1973]) {#
F.E. Heart, 5.M. Ornstein, W.R. Crouther, and W.B. Barker

A Neu Minicomputer/Mul tiprocessor for the ARPA Netwuork

Proceedings of the National Computer Conference, 1973,
pp. 529-537

(Lesser, 1974)
V.R. Lesser, R.D. Fennell, L.D. Erman, and D.R. Reddy
Organization of the HEARSAY || Speech Understanding System

Proceedings of the IEEE Symposium on Speech Recogni tion,
April 1874, pp. 11-21

(Newell, 1971)
A. Neuell, P. Freeman, D. McCracken, and G. Robertson
The Kernel Approach to Building Softuare Systems
1378-71 Computer Science Research Review
Cargegie-Melion Univ.

(Neweil, 1973)
A. Newell, J. Barnett, J. Forgie, C. Green, D. Klatt,
J.C.R. Licklider, J. Munson, R. Reddy, and W. Woods

Speech Understanding Systems: Final Report of a Study Group
Pub. by North-Holland, 1973

(Rober tson, 1974]
G. Robertson, A, Newell, and D. McCracken
On Doing Software Experiments
1373-74 Computer Science Research Revieu
Carnegie-Mellon Univ.

(Wulf, 1971)
MoAL Wulf, AN, Habermann, and D. Russell
B8LISS: A Language for Systems Programming
Communications of the ACM, December 1371
See also: "BLISS-11 Programmer’s Manual", DEC, December 13872

(Wutf, 19721
W.A. Wulf, and C.G. Bell
C.mmp -- A Multi-Mini-Processor
Proceedings AFIPS 1972, FJCC. Vol. 41, AFIPS Press,
pp. 765-777

(Mulf, 1974)

W. Wulf, E. Cohen, W. Coruin, A. Jones, R, Levin,
C. Pierson, and F. Mol lack

HYDRA: The Kernel of a Multiprocessor Operating System
Communications of the ACM, June 1974, pp. 337-345

e ——

31.

